Atypical location of cannabinoid receptors in white matter areas during rat brain development.
نویسندگان
چکیده
Previous evidence suggests that the endogenous cannabinoid system could emerge and be operative early during brain development. In the present study, we have explored the distribution of specific binding for cannabinoid receptors in rat brain at gestational day 21 (GD21), postnatal days 5 (PND5) and 30 (PND30), and at adult age (> 70 days after birth) by using autoradiography with [3H]CP-55,940. Our results indicated that specific binding for cannabinoid receptors can be detected in the brain of rat fetuses at GD21 in the classic areas that contain these receptors in adulthood-in particular, in the cerebellum and the hippocampus and, to a lesser extent, in the basal ganglia, several limbic structures, and cerebral cortex. The density of cannabinoid receptors in all these structures increased progressively at all postnatal ages studied until reaching the classical adult values in 70-day-old animals. Interestingly, cannabinoid receptor binding can also be detected at GD21 in regions, in which they are scarcely distributed or not located in the adult brain and that have the particularity of all being enriched in neuronal fibers. Among these were the corpus callosum, anterior commissure, stria terminalis, fornix, white matter areas of brainstem, and others. This atypical location was quantitatively high at GD21, tended to wane at PND5, and practically disappeared at PND30 and in adulthood, with the only exception being the anterior commissure, which exhibited a moderate density for cannabinoid receptors. Moreover, the binding of [3H]CP-55,940 to cannabinoid receptors in the white matter regions at GD21 seems to be functional and involves a GTP-binding protein-mediated mechanism. Thus, the activation of these receptors with an agonist such as WIN-55,212-2 increased the binding of [35S]-guanylyl-5'-O-(gamma-thio)-triphosphate, measured by autoradiography, in the corpus callosum and white matter areas of brainstem of fetuses at GD21. This increase was reversed by coincubation of WIN-55,212-2 with SR141716, a cannabinoid receptor antagonist. As this antagonist is specific for the cerebral cannabinoid receptor subtype, called CB1, we can assert that the signal found for cannabinoid receptor binding in the fetal and early postnatal brain likely corresponds to this receptor subtype. Collectively, all these data suggest the existence of a transient period of the brain development in the rat, around the last days of the fetal period and the first days of postnatal life, in which CB1 receptors appear located in neuronal fiber-enriched areas. During this period, CB1 receptors would be already functional acting through a GTP-binding protein-mediated mechanism. After this transient period, they progressively acquire the pattern of adult distribution. All this accounts for a specific role of the endogenous cannabinoid system in brain development.
منابع مشابه
Localization of mRNA expression and activation of signal transduction mechanisms for cannabinoid receptor in rat brain during fetal development.
In the present work, we analyzed cannabinoid receptor mRNA expression, binding and activation of signal transduction mechanisms in the fetal rat brain or in cultures of fetal neuronal or glial cells. Cannabinoid receptor binding and mRNA expression were already measurable at GD14, but they were only located in discrete regions at GD16. Among these, the hippocampus, the cerebellum and the caudat...
متن کاملCannabinoid CB1 Receptors Mediate the Gastroprotective Effect of Neurotensin
Objective(s) Several lines of evidence indicate that neuropeptides exhibit protective properties against gastroduodenal ulcers. Neurotensin, a gut-brain neuropeptide, is implicated in a number of physiological processes in the central nervous system and peripheral tissues including gastrointestinal tract. In the present study, we aimed to investigate the gastroprotective potential of either p...
متن کاملCB1 cannabinoid receptors are involved in neuroleptic-induced enhancement of brain neurotensin
Objective(s): Targeting the neuropeptide systems has been shown to be useful for the development of more effective antipsychotic drugs. Neurotensin, an endogenous neuropeptide, appears to be involved in the mechanism of action of antipsychotics. However, the available data provide conflicting results and the mechanism(s) by which antipsychotics affect brain neurotensin neurotransmission have no...
متن کاملP27: Brain Network as a Pivotal Part in Intelligence Function
Neuroimaging findings have proposed that some brain regions including the precuneus, posterior cingulate, and medial prefrontal cortex play an essential role of a structural core in the brain. Network organization endures rapid alterations in development with changes in axonal synaptic connectivity, white matter volume, and the thickness of corresponding cortical regions. Structural maturation ...
متن کاملThe Role of Cannabinoidergic System in Prenatal Neurodevelopment
The cannabinoidergic system acquired a reputation as the most abundant G-protein coupled receptor in the CNS that acts as retrograde modulator of neurotransmitter release. Recently, endocannabinoids (ECBs) have been highlighted as neurodevelopmental signaling cues that exert a regulatory role in brain development. The interruption in ECB system elements (including receptors and enzymes of synth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Synapse
دوره 26 3 شماره
صفحات -
تاریخ انتشار 1997